
Network Emulation with NetEm

Stephen Hemminger

Open Source Development Lab

shemminger@osdl.org

April 2005

Abstract

Many protocols and applications perform
poorly when exposed to real life networks with
delay and packet loss. Often, it is costly and
difficult to reproduce Internet behavior in a
controlled environment. There are tools avail-
able for testing, but they are either expen-
sive hardware solutions, proprietary software,
or limited research projects.

NetEm is a recent enhancement of the traf-
fic control facilities of Linux that allows adding
delay, packet loss and other scenario’s. Docu-
mentation and discussion of NetEm is main-
tained at http://developer.osdl.org/shemminger/

netem. NetEm is built using the existing Qual-
ity Of Service (QOS) and Differentiated Ser-
vices (diffserv) facilities in the Linux kernel.

1 Introduction

Why take a perfectly good fast local area net-
work (LAN) and make it slow and lossy? The
main reason is to research protocols and ap-
plications that have to run over a Wide Area
Network (WAN). The typical Ethernet net-
work has a latency of 100 microseconds and
can transfer 100’s of megabits per second.
Broadband connections are available at vary-
ing speeds from 128k to 4Mbits but can have a
large latency (of up to 50 milliseconds). An ap-
plication or protocol only designed for a LAN
environment will be unusable when run over
across the globe over the Internet.

The motivation behind NetEm is to pro-
vide a way to reproduce these long distance
networks in a lab environment. The first us-
age was to evaluate new TCP enhancements
for Linux 2.6. TCP performance over high
speed networks is under active research and

the subject of many papers. Linux 2.4 TCP/IP
used the TCP Reno [1] congestion control al-
gorithms that becomes unstable as the to-
tal bandwidth delay product (BDP) becomes
large. The the Stanford Linear Accelerator
Center (SLAC) TCP/IP testbed [2] explored
the response and fairness of several alterna-
tive congestion control schemes. The several
of these were incorporated into the production
Linux kernel:

• TCP Vegas [3] avoids congestion using
round trip time (RTT) to estimate con-
nection bandwidth.

• TCP Westwood+ [4] adjusts the conges-
tion window based on measured band-
width.

• BIC TCP [5] sets the congestion window
using binary search.

• Automatic receiver side buffer tuning [6].

A sample of the results of comparing TCP
congestion algorithms is shown in Figure 1.
The performance of single TCP stream was
tested using Iperf1 and NetEm to vary the de-
lay. These tests showed problems with band-
width estimation in the TCP Westwood and
Vegas implementation that are being investi-
gated.

NetEm has evolved incrementally over the
last year. The initial version (which was called
“delay”) was added to the Linux 2.6.7 kernel
and only supported specifying a constant de-
lay. After more features were added, the name
was changed to “netem” to better reflect the
purpose and scope.

1http://dast.nlanr.net/Projects/Iperf/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Delay (ms)

Bandwidth versus Delay for Gigabit Ethernet

Reno
Vegas

Westwood
Bic

Figure 1: Performance comparison of TCP congestion algorithms

1.1 Related Work

An alternate to emulation of networks, is com-
plete simulation in a virtual environment. Sim-
ulation is a more synthetic approach which in-
volves making a model of the network proto-
cols under test and applying synthetic data to
the model. Simulation is more useful when de-
veloping a new protocol from scratch because
the behavior is more reproducible and not in-
fluenced by real world timing details. The pro-
totypical network simulator for research inves-
tigations of new protocols is ns-2[7].

An interesting hybrid approach is “uml-
sim” [8] which uses user-mode Linux (UML) to
provide event-driven simulation. This allows
testing the standard TCP/IP protocol stack
using a pseudo-device that can simulate a net-
work. While useful for testing (and patching)
protocol behavior, umlsim is limited because
the user-mode kernel runs in a virtual environ-
ment that does not have the same performance
or timing as real hardware.

Many network emulators exist, but the two
most similar in design to NetEm are Dum-
mynet [9] and NIST Net. Dummynet is a stan-
dard part of FreeBSD and is implemented as

part of the packet filtering mechanism (similar
to netfilter). NetEm and Dummynet both act
on packets on the output flow before being sent
to the network interface. But it is completely
self-contained and can be used to implement
differentiated service on FreeBSD but it is not
as easily extended as the Linux qdisc architec-
ture. Emulab [10] emulates complex networks
with multiple machines and flows using Dum-
mynet.

NIST Net is a Linux kernel extension that
provides complex delay, loss, and other emula-
tion options. Since NIST Net is public domain,
many of these functions are re-used in NetEm.
However unlike NetEm, NIST Net operates on
incoming packets before they reach the proto-
col stack. Like Dummynet, NIST Net does all
it’s own filtering and queuing.

One other approach that has been used, is
emulating network delay using a simulated net-
work device to transfer packets to an user mode
process. A set of test tools using the “tun-
tap” device is available [11]. These tools allow
testing network behavior without any kernel
changes but the performance is limited because
of the extra data copies and context switches.

2 Design

NetEm consists of two portions, a small ker-
nel module for a queuing discipline and a com-
mand line utility to configure it. The kernel
module has been integrated in 2.6.8 (2.4.28)
and the command is part of the iproute22

package. Communication between the com-
mand and the kernel is done via the Netlink
socket interface [12]. Requests are encoded
into a netem specific message format and
sent/received down the netlink socket.

A Graphical User Interface (GUI)3 is also
available. It provides an interface similar to
NIST Net and is built using the Apache web
server and PHP scripting language.

Figure 2: Linux queuing discipline

The basic architecture of Linux queuing dis-
ciplines is shown in Figure 2. One (or more)
queuing disciplines exist between the protocol
output and the network device. The default
queuing discipline is a simple packet FIFO
queue.

A queuing discipline is a simple object with
two key interfaces. One queues packets to be
sent and the other releases packets to the net-

2http://developer.osdl.org/dev/iproute2
3http://www.smyles.plus.com/phpnetemgui/

work device. The queuing discipline makes the
policy decision of which packets to send based
on the its current state and parameters. Linux
already has a rich array of disciplines for queu-
ing, prioritization, and rate control policies.

A classful queuing discipline is a discipline
that contains other nested disciplines. More
complex policies are implemented by nesting
disciplines together in a manner similar to
pipes. For example, a priority queue disci-
pline can have multiple sub-queues. Those
sub-queues can be simple FIFO’s or more com-
plex disciplines such as as Token Buffer Filter
(TBF), or Random Exponential Drop (RED).

Internally, NetEm has two queues: one is a
private holding queue, and the other is a nested
queue discipline (typically a FIFO). The en-
queue interface takes in packets and times-
tamps them with a send time, then places them
in the holding queue. A timer moves packets
from the holding queue to the nested discipline
for transmit. The dequeue interface gets pack-
ets from the nested discipline.

2.1 Parameters

The user specifies the parameters to the net-
work emulator as arguments to the “tc” com-
mand. With no additional parameters, NetEm
behaves as a similar to a FIFO queue with no
loss, duplication, or reordering of packets.

2.1.1 Packet Delay

NetEm accepts both constant and random de-
lay parameters. Networks do not exhibit con-
stant delay; the delay varies based on other
traffic flows contending for the same path.
The resulting statistical distribution has one
or more peaks and a long tail [13]. NetEm de-
scribes delay in four possible parameters: the
average value (µ), standard deviation (σ), cor-
relation (ρ), and the statistical distribution ta-
ble. The random value is derived from a ta-
ble that can be generated from a mathematical
model or experimental data such as ping times.
By default, NetEm uses a uniform distribu-
tion (µ ± σ) but any distribution conversion
table. The iproute2 distribution includes tools
to generate a normal distribution, Pareto dis-
tribution, and a sample based on experimental
data.

The correlation parameter controls the re-
lationship between successive pseudo-random
values. The correlated pseudo-random number
generator uses scaled math to produce a corre-
lated random number xi based on the pseudo-
random values ri:

xi = ri ∗ (1 − ρ) + ρ ∗ xi−1

This works but is not accurate, it produces
less than the desired variance. NIST net adds
an empirically derived “correction” factor, but
NetEm does not. Better alternatives are being
examined for a future version.

2.1.2 Loss

Packet loss is implemented in NetEm by ran-
domly dropping a percentage of the packets be-
fore they are queued. Loss is specified in the
command interface as a percentage of pack-
ets to drop, and the correlation between suc-
cessive random numbers. The command then
translates that value to a scaled 32-bit number
because it is slow and difficult to use floating
point in the kernel. This makes the smallest
possible (non-zero) value for loss 2.3e− 10.

2.1.3 Duplication

Networks with reliable hardware shouldn’t du-
plicate packets; but with real networks redun-
dant routes and bad connections some dupli-
cation does occur. To emulate this behavior,
NetEm can randomly copy packets before they
are placed in the “waiting list” queue. Dupli-
cation is specified as a percentage of packets to
duplicate and a correlation value (the same as
loss).

2.1.4 Reordering

Packet reordering occurs when multiple pack-
ets traverse paths with differing delay. Some
high speed routing equipment use multiple
buses and processors that can create inter-
nal alternate paths. This can cause successive
packets to pass each other as one is processed
by the busier processor than the other.

NetEm has a simple form of packet reorder-
ing in the current implementation (2.6.10).
The user can specify a “gap” parameter that

acts like a random security check at the air-
port, choosing 1 out of N packets to get addi-
tional delay. This is useful for functional test-
ing of the reassembly logic of protocols. Unfor-
tunately, the “ungapped” packets are passed
through with no delay therefore this simple re-
ordering mechanism is not useful.

A planned enhancement for NetEm is to
provide more complete reordering implementa-
tion. The user should be able to specify prob-
ability (µρ) and packet distance (gap). The
existing gap implementation is equivalent to
100% probablity of reordering with a constant
distance.

2.2 Rate control

By default, NetEm uses a FIFO queuing disci-
pline for the outbound queue but other poli-
cies can be used. The queue management
utilities and API specify the relationship be-
tween queues by numerical handles, this will be
demonstrated in the next section. For a more
complete explanation see the Linux Advanced
Routing and Traffic Control (LARTC [14])
guide.

3 Usage example

This section describes an example usage of
NetEm. The section describes a test case that
emulates the Internet connection between the
authors DSL line and the conference website
host http://linux.conf.au.

The first step in creating this emulation is
to sample the net connection using ping. Ping
measures the round trip time to a host us-
ing the ICMP echo request. This is a “good
enough” estimate for this basic experiment but
ISP’s may treat ICMP traffic specially by im-
posing rate limits and/or preferential service.
A better method would be to run a tool like
Iperf on both ends of the connection and mea-
sure the delay and packet loss using UDP.

An overnight sample of 50,000 pings had
an average round trip time of (µ) 234.1 ms,
with a deviation (σ) 4.7 ms and a correla-
tion (ρ) of 28%. The resulting ping data was
then processed to produce a distribution ta-
ble. This was possible without recompiling the
“tc” command because the tables are not built
into the command, instead they are text files

 0

 2000

 4000

 6000

 8000

 10000

 12000

 220 225 230 235 240 245 250 255

N
um

be
r

of
 p

ac
ke

ts

Time (ms)

Measured
Normal

ParetoNormal
Generated

Figure 3: Linux.conf.au ping distribution

in /usr/lib/tc directory. Figure 3. shows a
comparison of the measured distribution data
with the resulting distribution produced by
NetEm.

The slowest path in the route to the con-
ference is the last-hop DSL connection that
has a maximum bandwidth of 1Mbit. There
are several rate limiting queuing disciplines to
choose from but the simplest to use is the To-
ken Buffer Filter (TBF). The latency and burst
size parameters control the size of the token
buffer internal queue. These parameters corre-
spond to the overall buffering capacity of the
network being emulated.

The commands to emulate the delay behav-
ior with NetEm are:

tc qdisc add dev eth0 root netem handle 1:0 \

latency 234ms 5ms 28% distribution linux.conf.au

tc qdisc add dev eth0 parent 1:1 handle 10: \

tbf rate 1mbit latency 200ms burst 128k

This works, but affects all traffic that goes
out over the network interface “eth0.” When
testing, it is useful to impact only some traf-
fic (the test case), not all traffic. This is ac-
complished by using the traffic control filtering
features of LARTC. A more complex example
that uses the filtering and a priority queue to

impact one one service is:

tc qdisc add dev eth0 root handle 1: prio

tc qdisc add dev eth0 parent 1:3 handle 30: \

netem latency 234ms 5ms 28% \

distribution linux.conf.au

tc qdisc add dev eth0 parent 30:1 \

tbf rate 1mbit latency 200ms burst 128k

tc filter add dev eth0 protocol ip parent 1:0 \

prio 3 u32 match \

ip dst 10.0.0.3/32 flowid 10:3

This creates a nested queue discipline struc-
ture as shown in Figure 4. The packets to be
sent are filtered so that traffic to IP address
10.0.0.3 is prioritized into a separate queue,
and that queue is rate limited and delayed.

4 Limitations

NetEm can model a single path through a net-
work, but real world networks are quite com-
plex and the emulation inevitably breaks down
in some circumstances. Linux timer granu-
larity effects the real-time nature of NetEm,
choice of Pseudo-Random Number Generator
(PRNG) impacts emulation results, and net-
work devices may not handle the sudden burst
of packets.

200ms

NETEM
+200ms

FIFO

FIFO

Default
"low"

Filter "high" TBF, 1 Mbps

Queuing disciplines for eth0

Figure 4: OSDL to linux.conf.au emulation

4.1 Timers

Linux is not a real-time system and this pro-
vides some constraints on the performance of
a real-time simulator such as NetEm. Ker-
nel timers are limited by the system time tick
rate of 1000Hz (1ms) on Linux 2.6.4 Therefore
NetEm can not be used to emulate relatively
short delay networks of less than 1ms.

This problem is not unique to NetEm, the
rate control disciplines also suffer when run-
ning over high speed links. It is not possible
to limit a 10Gigabit network to 100Mbit with
accuracy without higher resolution timers.

NIST Net gets around this by programming
one of the alternate time sources available on
the PC architecture to provide a high speed
clock. This has a performance impact because
of the high interrupt load and, more impor-
tantly, is not portable to other architectures.
There is ongoing work to provide higher reso-
lution timers in Linux5 that might be useful in
the future.

4.2 Random numbers

Several sources of pseudo-random numbers are
available in the kernel, but none of them are
well-suited to good emulation. The crypto-
graphically secure random number function
get_random_bytes() cannot be used heavily
because it relies on system events to provide
entropy. It is intended for providing crypto-
graphic keys and can block when low on en-
tropy until the entropy pool is replenished by
more external system events such as disk seeks,
packet arrival, mouse movement, etc.

The networking code has the simple 32-bit
PRNG function net_random() implemented

4The Linux 2.4 kernel uses a slower 100Hz clock
(10ms).

5http://high-res-timers.sourceforge.net

as a linear congruential generator (LCG).
LCG’s are not useful for simulators because
they produce patterns in the output that can
influence results. A better alternative was
found using a maximally equidistributed com-
bined Tausworthe generator based on code
from GNU Scientific Library 1.5. The decision
was made to replace the net_random() code
because all other places in the kernel would
benefit from the faster code and better ran-
domness.

4.3 Network Drivers

Most networking devices in Linux have a driver
transmit ring that holds a reference to data
ready for the hardware to process. This ring
has a bounded size, limited by the availability
of transmit control blocks. Under high load,
NetEm will cause packet bursts to the device
(every 1ms). The transmit ring must be suffi-
ciently large to handle this burst and the de-
vice must flow control properly. Testing ex-
posed several device drivers that did not flow
control properly and would either stop trans-
mitting or spin waiting for transmit ring slots.

5 Evaluation

NetEm can’t simulate the real Internet. The
parameters available are not enough to de-
scribe an arbitrarily complex network with
multiple levels of complexity. The real Internet
is very complex and always changing [13] and
it is impossible to create one simple model.

Therefore a better question is: how well can
NetEm recreate a typical connection’s behav-
ior? This was tested by constructing a model
of a 1 Mbit DSL (50ms delay) connection and
comparing the TCP behavior a during a 90
second transfer. The internal TCP state was

monitored using kernel probes [15] to capture
the sequence number and congestion window
variables.

Figure 5. is a graphical representation of
TCP Reno during the transfer. The snd_cwnd

line shows the congestion window that was
used on each output packet. snd_ssthresh is
the slow start threshold. The congestion win-
dow grows until packet loss and then after loss
is reset to the slow start threshold. The re-
sponse of TCP over NetEm is close the real
DSL link, and could be improved with more
tuning of the parameters. The spacing of the
saw teeth is a function of the size of the router
queues which can be adjusted by changing the
size of the token buffer filter’s internal queue.

6 Conclusion

NetEm has proved to be a useful tool for test-
ing protocol behavior. It provides the neces-
sary statistical options to emulate real world
network response. The author developed it to
validate BIC TCP and TCP Vegas for the 2.6
kernel; but many other developers are actively
using for testing protocols and applications.

References

[1] Floyd, S. and T. Henderson. (1999). RFC
2582 The NewReno Modification to TCP’s
Fast Recovery Algorithm.

[2] Bullot H. and Cotrell L. TCP Stacks
Testbed, http://www-iepm.slac.

stanford.edu/bw/tcp-eval/

[3] Brakmo L. and Peterson L. “TCP Vegas:
New techniques for congestion detection
and avoidance” Proceedings of the SIG-
COMM ’94 Symposium (Aug. 1994).

[4] Dell’Aera, A.; Grieco, L. A.; Mas-
colo S. “Linux 2.4 Implementation of
Westwood+ TCP with rate-halving: A
Performance Evaluation over the Inter-
net”. IEEE International Conference on
Communications (ICC04), Paris, France.
(June 2004).

[5] Xu, L.; Harfoush, K.; and Rhee I.
”Binary Increase Congestion Control for

Fast Long-Distance Networks.” INFO-
COM 2004. http://www.csc.ncsu.edu/
faculty/rhee/export/bitcp/

[6] Heffner, J. High Bandwidth TCP Queu-
ing, http://www.psc.edu/~jheffner/

papers/senior_thesis.pdf

[7] ICB, LBNL, VINT. The Network Simula-
tor – ns-2, http://www.isi.edu/nsnam/
ns/

[8] Almesberger, W. (2004). umlsim – Event-
driven simulation for User-Mode Linux,
http://www.almesberger.net/umlsim/

[9] Rizzo, L. ”Dummynet: a simple approach
to the evaluation of network protocols.”
ACM Computer Communication Review
(27 January 1997). http://info.iet.

unipi.it/~luigi/ip_dummynet,

[10] White B. et al. (2002). “An Integrated Ex-
perimental Environment for Distributed
Systems and Networks” USENIX Dec
2002.

[11] Morton, A. ”Re: simulate delays
and packet drops in tcp/udp”, linux-
net@vger.kernel.org (03 Sep 2002)
http://www.zip.com.au/~akpm/

packet-delay.tar.gz

[12] Salim J.; et al. (2003). RFC 3549 Linux
Netlink as an IP Services Protocol.

[13] Floyd, S.; Paxon, V. ”Why we don’t know
how to simulate the Internet”. In Proceed-
ings of the 1997 Winter Simulation Con-
ference (Dec. 1997)

[14] Hubert, B. et al. Linux Advanced Rout-
ing & Traffic Control HOWTO, http:

//ds9a.nl/2.4Networking/

[15] Panchamukhi, P. Kernel debugging with
Kprobes, http://www-106.ibm.com/

developerworks/library/l-kprobes.

html?ca=dgr-lnxw02Kprobe

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

Se
gm

en
ts

 (
cw

nd
, s

st
hr

es
h)

time (seconds)

snd_cwnd
snd_ssthresh

(a) DSL

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90

Se
gm

en
ts

 (
cw

nd
, s

st
hr

es
h)

time (seconds)

snd_cwnd
snd_ssthresh

(b) NETEM

Figure 5: Comparison of TCP sequence and window over DSL vs NetEm

